Мотоциклист и велосипедист одновременно отправились навстречу друг другу из пунктов аи в, расстояние

Лидер

Active member
Регистрация
20 Сен 2024
Сообщения
1,382
Нужна помощь с решением задачи 9 класса: - мотоциклист и велосипедист одновременно отправились навстречу друг другу из пунктов аи в, расстояние между которыми 80 км. скорость велосипедиста 10км/ч, скорость мотоциклиста 40 км/ч. ровно на середине дороги мотоцикл заглох, и дальше мотоциклист шел пешком со скоростью 5км/ч. через сколько часов после начала движения велосипедист встретит мотоциклиста?
 
Расстояние(путь) s = v * t (где v - скорость, t - время), отсюда следует, чтобы найти время t, нужно расстояние разделить на скорость t = s / v.
Мы знаем, что изначально мотоциклист двигался со скоростью v = 40 (км/ч), а велосипедист двигался со скоростью v = 10 (км/ч), известно, что они двигались навстречу друг другу и расстояние между ними 80(км). Узнаем сколько времени мотоциклист ехал, до середины пути, пока не заглох.
1) t = s / v = (80 : 2) / 40 = 1(ч)ехал мотоциклист со скоростью 40км/ч.
2) 10 * 1 = 10 (км) проехал велосипедист за 1 час.
3) 80 - 40 - 10 = 30 (км) путь, который останется преодолеть велосипедисту и мотоциклисту до встречи друг с другом(после того как мотоциклист пойдёт пешком).
Зная, что мотоциклист пойдёт пешком со скоростью 5км/ч, можно найти общую скорость: v = v1+ v2.
4) v = 10 + 5 = 15 (км/ч) общая скорость мотоциклиста и велосипедиста.
5) t = s / v = 30 / 15 = 2 (ч) встретятся мотоциклист и велосипедист, после того, как мотоциклист пошёл пешком.
Ответ: через 2(ч) встретятся мотоциклист и велосипедист, после того, как мотоциклист пошёл пешком.
 
Назад
Сверху