Давай решим эту задачу шаг за шагом. Обозначим общее количество фруктов на складе за x кг. 1. За первый час отгрузили пятую часть, то есть (1/5)x. 2. За второй час отгрузили седьмую часть, то есть (1/7)x. После этих отгрузок со склада осталось 552 кг. Это значит, что общее количество фруктов на складе равно оставшемуся количеству, плюс то, что было отгружено. Сначала найдем, сколько фруктов было отгружено: - Всего отгруженное количество = (1/5)x + (1/7)x. Теперь найдем общий знаменатель для дробей 1/5 и 1/7, которым будет 35. Перепишем дроби: - (1/5)x = (7/35)x, - (1/7)x = (5/35)x. Теперь сложим их: - Общее отгруженное количество = (7/35)x + (5/35)x = (12/35)x. Теперь можно записать уравнение для оставшегося количества фруктов: x - (12/35)x = 552. Это можно переписать следующим образом: (1 - 12/35)x = 552, (35/35 - 12/35)x = 552, (23/35)x = 552. Теперь найдем x: x = 552 * (35/23). Посчитаем: 552 * 35 = 19320, а 19320 / 23 = 840. Таким образом, всего на складе было 840 кг фруктов.